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Evolution of the muscular system in
tetrapod limbs
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Abstract

While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less
attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and
on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop
from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns
to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle
homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm.
The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell
population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with
tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively.
The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental
processes, which should be studied from an evolutionary perspective in the future.

Keywords: Development, Evolution, Homology, Fossils, Regeneration, Tetrapods
Background
The fossil record reveals that the evolutionary rate of
vertebrate morphology has been variable, and morpho-
logical deviations and alterations have taken place unevenly
through history [1–5]. Sporadic geneses of new homologies,
or units of evolutionary alterations, reflect this uneven
evolutionary tempo. A synthesis of paleontology and evo-
lutionary developmental biology may help to increase our
understanding of how morphological homologies spor-
adically arise and why they are conserved in subsequent
generations. However, in most cases, only post-embryonic
morphology is observable in fossils, making it difficult to
attribute observed evolutionary changes to certain devel-
opmental changes.
In the vertebrate body, skeletal muscles are connected

to specific sites of connective tissues, such as bones, and
these connections are generally unchanged after their
initial formation. Thus, evolutionary changes in muscle
connections, which can also be observed in fossil bones,
correspond to changes in morphogenetic process, unlike
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other morphological characters that may change during
growth. Skeletal muscles thus exhibit clear advantages
for the integration of paleontology and evolutionary
developmental biology. This paper aims to summarize
the current understanding of the evolution and develop-
ment of skeletal muscles in the hopes of providing a basis
for future studies. In particular, from the perspective of the
role of developmental constraints in evolution [6], we focus
on forelimb muscles, which were functionally diversified in
tetrapod history. In regards to the interplay between devel-
opmental and functional constraints that shapes evolution,
the conventional approach to modes of evolution [1] has
addressed functional aspects, or adaptations, but has too
often neglected developmental constraints as black boxes.
We seek to remedy this deficit by suggesting a new frame-
work for incorporating developmental constraints into re-
searches on modes of evolution.
Evolutionary history of tetrapod limb
musculoskeletal systems
In comparative anatomy, the homology of forelimb muscles
among extant tetrapod species is identifiable based on gross
anatomy, such as the connections between these muscles
and bones or innervations, and the same set of names has
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been applied to different tetrapod classes [7–16], although
there have been a few misidentifications in classical papers,
e.g., for turtles [17]. Since the topographical relationships
among limb muscles and their attachment sites are rather
well conserved in extant tetrapods, reconstructions of
muscles on the limb skeletons of fossil tetrapods has
been achieved [18–24]. However, determining the one-
to-one homology between tetrapod limb muscles and fish
fin muscles has been more difficult [20, 24–27]. Extant
tetrapods possess as many as 30–40 individual muscles
with specific names in their forelimbs, while extant fishes
possess fewer than 10 descriptive pectoral fin muscles
[26, 28, 29]. Clearly, substantial new homologies in the
musculature were acquired during the fin-to-limb transition.
The evolution from fin muscles to limb muscles occurred

deep in time (Fig. 1; the numerical values for ages follows
the Geological Time Scale v.4.0 [30]). In the geological time
scale, vertebrates first emerged in the fossil record around
Fig. 1 Evolution of the limb muscles on the time-calibrated phylogenetic t
and brachial plexus. c Loss of aquatic larval stage and regeneration capabil
areas stand for putative transitional forms separating “grades” in fin/limb m
limb muscle evolution. Sarc Sarcopterygia, Tetr, Tetrapodomorpha
520 million years ago [31–33], and the earliest fossil occur-
rences of paired fin-bearing gnathostomes are in the Early
Silurian, 444–433 million years ago [34, 35]. The osteostra-
cans, a stem-group of the gnathostomes, possessed only
pectoral fins, but the endoskeletal elements were already
present in their pectoral fins [36], suggesting that the fin
musculoskeletal system originated in the common ancestor
of osteostracans and crownward lineages (Fig. 1, arrow a).
Pelvic fins evolved in placoderms and crown-group

gnathostomes [37], and from the latter, sarcoptery-
gians evolved 423 million years ago (Ludlow Epoch of
the Silurian) [38] (Fig. 1). Tetrapodomorphs evolved as a
clade within the Sarcopterygia (Fig. 1), specifically sharing
the last common ancestor with dipnoans (lungfishes)
[39, 40]. Analysis of fossil trackways [41, 42] has sug-
gested that limb-bearing tetrapods first walked on the
ground around 400 million years ago, and body fossils
of limb-bearing tetrapods have been discovered from the
ree. a Acquisition of paired fins. b Establishment of the limb muscles
ity. d Evolution of the diaphragm from a shoulder muscle. The stippled
uscle evolution. The bar in the bottom shows the timescale of the
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stratum of 375 million years ago [43, 44], providing phys-
ical evidence for the minimum age of the limb-bearing
tetrapod history.
During the evolutionary transition from pectoral fin to

forelimb, the ulna became as large as the radius, and the
articular facets of the elbow and wrist joints turned, en-
abling the support of the body on a substrate [45–48],
although the mobility of these joints was limited in the
early limb-bearing tetrapods [49].
As for muscles, it is likely that the major morphological

and topographical transitions took place concomitantly
with the skeletal evolution, giving rise to the elbow and
wrist joints of the forelimb. Indeed, the cross-section
shape of the humerus and some muscle attachment sites
on its surface in a basal limb-bearing tetrapod [24, 50] are
consistent with this assumption. Thus, ancestral limb
muscles had already emerged within the first 30% of the
total history of vertebrate evolution (~ 520 million years).
In addition, whereas the fin-to-limb transition took place
in a short period of the evolution of paired appendage
(Fig. 1, arrow b), limb muscles were not significantly
modified for around 85–90% of the whole paired append-
age history (Fig. 1). Considering the period of time to be a
proxy for the number of generations, the long absence of
evolutionary deviation for limb muscles represents strong
empirical evidence of both the robustness of limb muscle
development and the singularity of its evolutionary origin.
Despite the conservation of limb muscle homology, the

development of limb muscles is variable in timing and in
the environment surrounding the progenitor cells. In
amniotes, limb muscles develop almost in parallel with
other skeletal muscles during embryonic development,
and become functional before birth, whereas in many
species of extant amphibians, the limbs and their muscles
develop during larval stages [51–53]. Such relatively de-
layed development of limb muscles in amphibians has
repeatedly led to the conclusion that these limb muscles
are of lateral plate mesodermal origin [54, 55] unlike those
of amniotes, which are of somitic origin [56–58]. How-
ever, in the current understanding, the limb muscles of
amphibians are also of somitic origin [59–61]. In addition,
concomitant with a unique Hox gene expression pattern
[62, 63], the developmental sequence of limb skeleton
[64, 65] and muscles [66] in urodele amphibians is oppos-
ite to that in amniotes and anuran amphibians. Moreover,
extant amphibians, especially urodeles, show high capabil-
ities of regeneration of limb musculoskeletal systems
[67–69]. In these amphibians, limb muscle homology is
recurrently formed both in normal development and in
regeneration, providing further evidence of the robustness
of limb muscle development.
Extant amphibians consist of only a fraction of several

anamniote tetrapod lineages, and the phylogenetic posi-
tion(s) of extant amphibians remains a matter of
controversy. In one hypothesis, extant amphibians are all
included in a single clade, the Lissamphibia, which evolved
from the Temnospondyli, whereas the Amniota evolved
from another clade, from which the extinct Seymouriamor-
pha and Lepospondyli also branched off [39, 70–72] (Fig.
1). An alternative hypothesis assumes the lepospondyl affin-
ity of extant amphibians [73]. In both hypotheses, the
data on these fossil anamniote taxa provide insights
into the ancestral condition of the limb development.
Many stem anamniotes (basal temnospondyls, seymour-

iamorphs and lepospondyls), similarly to lissamphibians,
had an aquatic, gill-bearing larval or juvenile stage [74–76].
Thus, the common ancestor of crown-group tetrapods
likely had an aquatic larval/juvenile stage also. Al-
though metamorphosis, which involves rapid morpho-
logical reorganization, evolved within the lissamphibian
stem lineage [4, 77], it is possible that limb muscles de-
veloped in post-embryonic remodeling, at some point
during the free-swimming larval or juvenile period in
fossil anamniotes including the ancestors of amniotes,
as suggested by data of basal temnospondyls [78–80],
lepospondyls [80, 81], and the fin-bearing tetrapodo-
morph Eusthenopteron [82]. It is worth considering the
possibility that the post-embryonic development of
limb muscles seen in extant amphibians represents the
ancestral state for tetrapods. Additionally, the possibil-
ity that the major evolutionary changes in developmen-
tal sequence could only have occurred in the early
evolution of tetrapods [4] deserves consideration from
the perspective of temporal change of evolvability.
The fossil record provides some indication for the de-

velopment of the forelimb in the stem temnospondyls
proceeding from the radial to the ulnar sides, as in the
urodeles [83, 84]. Accordingly, the difference in develop-
mental sequence between urodele and anuran/amniote
limbs likely reflects two or more evolutionary changes in this
developmental signature, rather than urodele synapomorphy.
Extant urodele amphibians are able to regenerate limb

muscles [85, 86]. Similar regeneration capabilities have
been recognized in fossils of the stem temnospondyls
and lepospondyls [84]. In addition, a recent study dem-
onstrated that lungfishes, the sister group of the tetrapo-
domorphs, regenerate fins in a process similar to that in
urodeles, by deploying gene regulatory networks that
shared, at least in part, with those of urodeles, which
suggests that the capacity for regeneration is plesiomorphic
to tetrapodomorphs [87] (Fig. 1, arrow c). Although this re-
generative competence was secondarily lost in amniotes
and anurans, a common mechanism for recurrently gener-
ating limb muscles may underlie both development and re-
generation. Future research on limb muscle regeneration
may lead to a better understanding of the developmental
mechanisms underlying limb muscle homology and its evo-
lutionary origins.



Fig. 2 Comparison of innervation patterns of pectoral fin/forelimb muscles according to Fürbringer’s theory. a Squalus (shark, elasmobranch
chondrichthyes). b Acipenser (sturgeon, non-teleost actinopterygian). c Latimeria (coelacanth, actinistian sarcopterygian). d Neoceratodus (dipnoan
sarcopterygian). e Tetrapods. Red circles indicate positions of the plexus (in Squalus, the anastomosis). Arrows shows spinal nerves joining
pectoral fin/forelimb muscle innervations, and their respective innervating portions (muscles) are simplified as paths of arrows, according to
Fürbringer [88]. Skeletal elements of the metapterygial axis are colored in blue, and the other (preaxial or postaxial) skeletal elements in gray.
pl.br, plexus brachialis, pl.ompt.ant plexus omopterygius anterior, pl.ompt.dist plexus omopterygius distalis, pl.ompt.post plexus omopterygius posterior.
a b and d are based on Braus [95]. c is based on Millot and Anthony [102]. Metaptarygial axes are based on Shubin and Alberch [64]
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Brachial plexus as an evolutionary novelty
Fürbringer once emphasized that a motor nerve and its
innervating skeletal muscle constitute a unitary structure
(neuromotorische Apparate) [88]. In this scheme, the
homology of limb muscles is linked with that of motor
nerves, which extend from the central nervous system to
the skeletal muscle, often forming anastomoses before
innervation (Fig. 2).
Tetrapod forelimb muscles are innervated by nerves

that branch off from the brachial plexus [25, 89–93]. In
elasmobranchs, pectoral fin muscles are innervated by
the main trunks of the spinal nerves, which lack extensive
anastomoses [89, 94–97] (Fig. 2a). In the actinopterygians
and non-tetrapod sarcopterygians (i.e., coelacanths and
lungfishes), the fin muscles are innervated by plexus-
forming nerves (Fig. 2b–d). The plexuses of these
osteichthyan fishes are composed of both occipital and
spinal nerves [94, 95, 98].
According to the previous anatomical descriptions, a

spectrum of complexity of anastomoses between fin
muscle-innervating nerves is recognizable in osteichth-
yan fishes. However, most fish taxa show the shared fea-
ture that the plexus of nerves innervating the pectoral
fin muscles can be subdivided anteroposteriorly into two
parts; namely, the Plexus omopterygialis anterior and Pl.
omopterygialis posterior, although relatively inconspicu-
ous anastomoses exist between them [95]. In embryonic
development of the Australian lungfish (Neoceratodus
forsteri), these two plexuses develop separately across
the first rib [99]. In general, Pl. omopterygialis anterior is
more elaborated than Pl. omopterygialis posterior. In
some actinopterygian species, Pl. omopterygialis poster-
ior is nothing more than a series of connections between
nerves running independently [95, 100].
Besides the commonality of the two subdivided plexuses,

there is a difference in plexus formation between the acti-
nopterygian and sarcopterygian fishes. In sarcopterygian
fishes, pectoral fin muscles develop distally to span the dis-
tal skeletal joints through tendinous insertions, whereas in
actinopterygians, muscles cover only the proximal portion
of the pectoral fin [26, 27, 95, 101]. Concomitant with the
differences in muscle distribution, unlike actinopterygians
(Fig. 2b), sarcopterygian fishes possess an additional nerve
plexus distal to Pl. omopterygialis anterior and posterior
within the muscles of the pectoral fin (Fig. 2c, d). Braus
named this distal plexus as Pl. omopterygialis distalis [95]
in his description of the Australian lungfish (N. forsteri). A
comparable plexus is also identifiable in the extant coela-
canth (Latimeria chalumnae) [102].
For a wide range of tetrapod taxa, topographical pat-

terns of brachial plexuses have been described in detail
[12–16, 103–108]. Although inter- and intraspecific
[109] variations exist, a comparable branching pattern
is recognizable in tetrapod brachial plexuses; this has
been used for homologizing forelimb muscles [25, 88].
Unlike pectoral fin muscles in fishes, forelimb muscles



Fig. 3 Dorsal and ventral premuscle masses in the forelimb bud of
Lacerta viridis (European green lizard). Modified from Corning [112].
AER apical ectodermal ridge
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in tetrapods are innervated by only seven or fewer
spinal nerves. In amniotes, brachial plexuses typically
consist of four spinal nerves at the cervico-thoracic
boundary of the axial musculoskeletal system [110].
Most limb muscles are innervated by nerve fibers com-
posed of two or more roots of the plexus, or spinal nerves
[88]. A set of these features is shared exclusively among
tetrapods, suggesting that the brachial plexus evolved as a
new unit of homology, or an evolutionary novelty.
Regarding the evolutionary origin of the brachial plexus

and forelimb muscles, Fürbringer [88] once presented a
hypothesis, which was supported by Braus [95] but has
long since been forgotten. Fürbringer [88] proposed that
in tetrapods most proximal limb muscles are innervated
by nerves of anterior (preaxial) roots of the brachial
plexus, whereas most distal limb muscles are innervated
by nerves of posterior (postaxial) roots (Fig. 2e). In
addition, he noted that the width of the appendage, in
terms of number of associated spinal nerves (or somites),
became narrowed at the fin-to-limb transition. Based on
these observations, he formulated an evolutionary sce-
nario from fin to limb: concomitant with the narrowing of
the appendage, the antero-posterior axis of the innerv-
ation pattern and accompanying musculature in fish fins
was shifted to the proximo-distal axis in tetrapod limbs,
and this change brought about the dissolution of the seg-
mentation pattern of spinal nerves and musculature. Al-
though Fürbringer [88] did not specifically discuss skeletal
homology, his theory is consistent with the evolutionary
change in orientation of the metapterygial axis of skeletal
elements across the fin-to-limb transition [64] (Fig. 2).

Migratory muscle precursors
Since the late nineteenth century, detailed observations
of histological sections have been conducted for studying
the development of limb muscle. Early scholars found
that, in amniote embryos, limb muscles develop from
migrating somitic cells, which are secondarily released
from the segmentation pattern of somites [100, 111–114].
According to these observations of amniote embryos, the
ventrolateral ends of the dermomyotomes, which extend
toward the base of the limb bud, lose their epithelial struc-
tures at a certain developmental stage, and subsequently
such de-epithelialized cells become dissolved into the mes-
enchyme of the limb bud (Fig. 3). This dissolution contrasts
with the ventrally extending process of the dermomyotome,
which forms the body wall muscles in amniotes. Within the
limb bud, these migrating somitic cells can be distinguished
histologically from the surrounding mesenchymal cells
by their relatively large size of nucleus, possibly reflect-
ing a less defined transcription pattern in chromatin
dynamics [115], and they form cell masses, called “pre-
muscle masses” [55, 113] or “muscle masses” [116, 117],
before myogenesis. In the early phase of migration and
proliferation of the de-epithelialized dermomyotome-derived
cell population, there are two—dorsal and ventral—premus-
cle masses within the limb bud (Fig. 3), and these premuscle
masses are not distributed in the body wall, where the
shoulder girdle develops [114]. As development pro-
ceeds, the medial portions of the premuscle masses ex-
pand toward the body wall. In other words, the premuscle
masses initially intrude laterally into the limb bud but not
the body wall, and then a part of the premuscle masses in-
trudes medially into the body wall [113, 114, 118]. A cen-
tury later, this phenomenon was confirmed and termed
the “in-out” mechanism [119]. Through this mechanism,
the muscles spanning the limb skeleton and trunk (i.e.,
the pectoralis and latissimus dorsi muscles) develop
[113, 114, 118, 119]. In contrast, the muscles connect-
ing the girdle skeleton with the trunk (i.e., the rhom-
boideus and serratus muscles) develop as part of the
body wall muscles [114, 118–120]; thus, they have often
not been classified as limb muscles [118]. In the above
classification, true limb muscles develop from the pre-
muscle masses that cancel the segmentation pattern
and migrate to the limb bud, at least temporarily.
From the evolutionary perspective, this “diffuse migra-

tion of cells into the limb” [121] seen in amniote embryos
has been compared with the developmental processes of
fin muscles of fishes [99, 100, 114, 122–126] (Fig. 4). In
anamniotes, the dermomyotome is not often segregated
from the myotome, but the corresponding structure,
whose ventral part extends ventrally to develop into fin
and body wall muscles, has been recognized. In shark em-
bryos, the segmentation pattern of the somites is main-
tained during the development of pectoral fin muscles, as



Fig. 4 Development of the pectoral fin muscles in Neoceratodus forsteri (Australian lungfish) [99]. a Ventral process of the dermomyotome
extending ventrally across the pronephric ducts at Stage 42. Note the dermomyotome in N. forsteri is not segregated from the myotome, unlike
in amniotes. b Ventral process of the dermomyotome separated from the dorsal dermomyotome at Stage 43+. c Enlarged image of the ventral
process of the dermomyotome in (b). At this stage, the migratory muscle precursors (MMPs) are delaminated from the lateral lamina of the
ventral process of the dermomyotome, showing a similarity with amniote limb muscle precursor cells. d Dorsal and ventral premuscle masses at
Stage 44+. At this stage, individually migrating cells are distributed in the dorsal and ventral parts of the fin bud in N. forsteri, like in amniotes (see
Fig. 3). e Dorsal and ventral premuscle masses at Stage 46. f Onset of myofibers of the dorsal and ventral muscles of the pectoral fin at Stage 48.
cart, cartilage; coel, coelom; dmt, dermomyotome; dmtv, ventral process of the dermomyotome; dm, dorsal muscle; dpmm, dorsal premuscle
mass; int, intestine; mmp, migratory muscle precursor; pcc, precartilage condensation; pl.ompt.post, plexus omopterygius posterior; prn,
pronephros; smp, somatopleure; vm, ventral muscle; vpmm, ventral premuscle mass
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the epithelium of each myotomal sprout towards the fin
bud (“Muskelsprosse,” “Muskelknopsen,” or “muscle bud,”
in classical reports) is not dissolved until immediately
before myogenesis [122, 123, 126–128]. A recent study
discovered that in shark embryos the epithelium of
Muskelsprosse is once decomposed a short time before
the epithelium of segregated Muskelsprosse becomes
recomposed [129] (Fig. 5a, b). Therefore, the fin mus-
cles of sharks develop not from direct extension, but
from the recomposed epithelialized cell mass, which is
pulled apart from the dermomyotomes. In contrast, in
osteichthyan fishes (sturgeon [100]; teleosts [123, 130];
and Australian lungfish [99, 131]), the epithelial structure
of each myotomal extension is dissolved in the fin bud, and
the Muskelsprosse-derived cells become mesenchymal
before myogenesis (Fig. 4). With respect to this de-
epithelialization of the myotomal extension, Sewertzoff
[114] noted the similarity between fin muscle development
in osteichthyan fishes and limb muscle development in am-
niotes, and suggested that the difference between osteichth-
yan fin and amniote limb muscles reflects solely a
heterochrony of myotomal de-epithelialization (Fig. 5c–e).
As others have recognized [112, 124], the position of the
myotomal de-epithelialization differs proximo-distally, even
among amniotes; it occurs inside the limb bud in squa-
mates (Figs. 3 and 5d), and at the boundary between the
body wall and limb bud in birds and mammals (Fig. 5e).
From these lines of evidence, the developmental mode
commonly observed in actinopterygian (sturgeon and tele-
osts) and sarcopterygian (lungfish: Figs. 4 and 5c) fishes
may represent the ancestral condition for amniotes, al-
though the evolutionary origin of the mesenchymal migra-
tion of fin/limb muscle precursor cells remains unclear. It
is impracticable to infer the evolutionary relationship be-
tween the osteichthyan and chondrichthyan developmental
modes (Fig. 5f), due to the lack of proper outgroup taxa,
and the possibility remains that the developmental mode
observed in sharks (Fig. 5a) represents a derived condition
arising from the secondary loss of mesenchymal migration
[129]. In the shark pectoral fin, twoMuskelsprosse segments
arise from a dermomyotome (Fig. 5b), whereas in osteichth-
yan pectoral fin/limb, a single Muskelsprosse segment arises
[114]. It may be that the temporary decomposition of the
epithelium of fin muscle primordium described in the shark
by Okamoto et al. [129] reflects a process of Muskelsprosse
bifurcation, which is chondrichthyan-specific.
In molecular biological studies of amniotes, both the

cells undergoing diffuse migration into the limb bud and
the precursor cells of hypobranchial muscle have been
called “migratory muscle precursors (MMPs)” [132–136];
hypobranchial muscle precursor cells are also recognized
as diffuse migrating cells in classical histological studies
[112, 121, 137]. Before the initiation of myogenesis, these
amniote MMPs migrate and proliferate while abutting



Fig. 5 Developmental processes of the premuscle masses in the pectoral fin/forelimb buds. a Development of the pectoral fin premuscle masses
in the shark shown in a transverse section (based on Okamoto et al. [129]). b Bifurcation of each pectoral fin premuscle mass in the shark in
lateral view (based on Okamoto et al. [129]). c Development of the pectoral fin premuscle masses in the lungfish shown in a transverse section
(based on Semon [99]). d Development of the forelimb premuscle masses in the lizard shown in a transverse section (based on Corning [112]).
e Development of the forelimb premuscle masses in the chicken shown in a transverse section. f Phylogenetic relationship among taxa illustrated
in (a–e). dMMP, dorsal route of migratory muscle precursors (MMPs); dmt, dermomyotome; dmtv, ventral process of the dermomyotome; msp,
Muskelsprosse; pecf, pectoral fin bud; vMMP, ventral route of MMPs
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other mesenchymal cells, which later develop into con-
nective tissues, including bones, ligaments, and tendons.
According to mouse genetics studies (reviewed by
[138–141]), two transcriptional factors, namely Pax3
[142] and Lbx1 [143–145], as well as the Hgf and c-Met
signaling pathway [134, 146, 147] are involved in the un-
differentiated status of the MMPs. Lbx1 gene expression
has also been observed in fin/limb muscle precursor cells
of anamniote gnathostomes [52, 129, 148–150]. Unlike in
limb muscle and diaphragm precursor cells [133], the dif-
fuse migration of hypobranchial muscle precursor cells
(probably except for the muscles of the secondary tongue
[146], which newly evolved in tetrapods [151]) does not
involve the Hgf and c-Met signaling pathway [152, 153].
From the evolutionary perspective, however, this genetic

regulation had not necessarily been established at the evo-
lutionary origin of the developmental mode involving the
diffuse migration of the fin/limb muscle precursor cells.
Moreover, such genetic regulation is subject to develop-
mental system drift [154]; for instance, in the axolotl, the
function of Pax3 in MMP migration is substituted by Pax7,
allowing a gene loss of Pax3 from the genome [155]. For
these reasons, it is inappropriate to define the MMP simply
by the expression of Pax3, Lbx1, and c-Met, when compar-
ing fin/limb muscle development among clades broader
than amniotes. Indeed, in Lbx1−/− mice, MMPs migrate to
develop into a subset of muscles [144], indicating that Lbx1
expression is not essential for the cellular status of the
MMP. Accordingly, MMP is defined as a cell that meets
two criteria: (1) a mesenchymally migrating and proliferat-
ing muscle progenitor cell; and (2) a muscle progenitor cell
in which differentiation is arrested.
In amniotes, the migration of MMPs begins with an

intrusion into the limb bud mesenchyme, which is solely
of lateral plate mesoderm (LPM) origin. In limb muscle
development, MMPs are produced from the somites ad-
jacent to the limb bud through extrinsic cues from the
limb bud, although depending on the Hox code, somites
can exhibit intrinsic competence to produce putative
MMPs (Lbx1-positive cells) [156]. Observations using
scanning electron microscopy and histological sections
at the limb level of chicken embryos, indicate that MMP
cells pass through a cell-free space above the Wolffian
duct, where extracellular matrix (ECM) fibrils are accu-
mulated [157]. Although ECM plays an important role
in cell migration in general [158], its influence on the
MMP colonization of the limb-level LPM remains
largely unknown. In transplantation experiments, the
normal migration of MMPs occurs only when they en-
counter the LPM at the same or earlier developmental
stage [56, 159]; from this it has been inferred that the
intercellular space formed by ECM becomes restricted,
eventually disturbing the MMP intrusion, at later devel-
opmental stages [159].
In addition to MMPs, endothelial precursors in the

limb bud are derived from somites; their cell lineage is
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already separate from MMPs before their intrusion into
the limb bud [160–162]. Prior to MMP colonization of
the limb bud, somite-derived endothelial progenitors mi-
grate into the limb bud, which is necessary for correct
MMP migration [161, 163]. The pathfinding migration
of endothelial precursors into the limb bud may affect
the embryonic environment such that it accepts the mi-
gration of MMPs [163], although MMPs do not precisely
follow the migratory route of endothelial precursors dur-
ing migration within the limb bud [164].
As described above, MMPs take two separate migratory

routes, namely via dorsal and ventral masses within the
limb bud [114, 165, 166] (Figs. 3 and 4). Based on trans-
plantation experiments disturbing the order of somites,
MMPs do not possess intrinsic information about their des-
tinations [167, 168]. Indeed, each limb muscle consists of
cells derived from multiple somites [164, 167, 169, 170], as
predicted in classical studies [88]. Sewertzoff [114] observed
that the segmental character becomes lost through a con-
centration of MMPs (as well as spinal nerves) at the en-
trance of the limb bud. The craniocaudal convergence of
the limb/fin bud during its early development [171, 172]
probably leads to this concentration of MMPs coming from
the somites beyond the width of the limb bud.
While our knowledge about the differentiation of skeletal

muscle has steadily increased [141, 173], the morphogen-
esis, or topographical patterning, of the limb musculature
has remained relatively unclear. Nevertheless, there is com-
pelling evidence that MMPs develop into separate muscles
in response to information from the LPM [160, 174–177].
Specifically, the distribution of LPM-derived interstitial
muscle connective tissue (MCT) precursors, which express
Osr1 and/or Tcf4 transcriptional factors, mediates the
myogenic regionalization, or “pre-patterning” of mus-
cles, by providing a muscle-specific ECM and a favor-
able signaling environment [178–182]. In addition, it
has been reported that an ectodermal signal (Wnt6)
affects the myogenic regionalization [183].
During the formation of the muscle pre-pattern, mo-

lecular interactions occur between the migrating MMPs
and limb mesenchyme. According to studies of chicken
embryos, spatiotemporally restricted distribution of the
ligand ephrin-A5 within the limb mesenchyme provides
a repulsive signal for migrating MMPs, which carry the
tyrosine kinase receptor EPHA4 on their cell mem-
branes [139, 184]. The migrating MMPs also carry the
CXC chemokine receptor, CXCR4, and are attracted to-
ward the limb mesenchyme, where the CXCR4 ligand
(CXCL12; also known as SDF-1) is produced [185].
CXCL12/CXCR4 signaling is involved in the secondary
intrusion of limb bud-dwelling MMPs into the body wall
(i.e., the in-out mechanism) [186–188].
Subsequent to the pre-patterned muscle primordia,

the morphogenesis of limb muscles involves subdivision
into individualized muscles (muscle splitting); each muscle
is then enveloped by a continuous dense irregular MCT
called the epimysium. A dense regular MCT, the tendon,
attaches the epimysium to the skeletal element enabling it
to transmit the muscle’s force to the skeletal element.
Muscle fibers do not necessarily run parallel to tendons; in
pennate muscles, for example, muscle fibers run at an angle
to tendons and aponeuroses (tendinous sheets). In addition,
another type of MCT, the fascia, which includes dense ir-
regular and soft (adipose and areolar) MCTs [189], sur-
rounds and intervenes between the epimysia and tendons.
There is compelling evidence that muscle splitting is af-

fected by the blood vessels within the limb bud [190, 191].
In the developing limbs of chickens, the vasculature pattern
is formed independent of the distribution of MMPs; muscle
splitting subsequently occurs along the zone occupied
by endothelial cells [191]. During this process, probably
through the increased production of ECM induced by
PDGFB (platelet-derived growth factor B) from endothelial
cells, the MCT cells assemble at the future splitting zone,
eventually subdividing the premuscle masses [191].
Whether this developmental process occurs in fin buds re-
mains unclear, as observations have been limited to the
marginal veins [100, 192]. In amniotes, blood vessels in the
limb bud are composed of endothelial cells, which are dif-
ferentiated from migrating somitic cells [162, 193]. Because
the involvement of migrating somitic cells in the formation
of the blood vessels within fin buds has not been studied in
any fishes, it is impossible to determine the evolutionary
origin of the migrating endothelial precursors. It should be
noted that a recent detailed study of the ventral end of the
dermomyotome at the pectoral fin level in shark embryos
[129] did not identify any migrating endothelial precursors.
In humans, the topography of major arteries supplying

the forelimb muscles shows intraspecific variation
[194–198], implying that the pattern of blood vessels
is not a single determinant of muscle splitting in the limb
bud. Indeed, the topography of embryonic blood vessels is
flexible in response to the local environment, because it is
formed under the influence of oxygen and nutrient de-
mand, as well as blood flow [199]. In the developing fore-
limb bud of mammals [200] and birds [201–203], a web of
fine vessels (i.e., the capillary network) appears uniformly
at first, and then becomes remodeled to establish branch-
ing thick vessels through poorly understood mechanisms,
which may allow a certain level of variability.
Nevertheless, there is a modest evolutionary relation-

ship between arterial and muscular topographies. In the
limb-to-flipper evolution of the cetaceans, corresponding
to fixations of elbow and wrist joints, the forearm and
manual muscles became reduced, such that some mus-
cles, including the biceps brachii, brachialis and intrinsic
manual muscles, were lost [204–208]. Among tetrapods,
cetaceans possess the simplest topography of forelimb
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arteries; unlike in other tetrapods, the branching of the
brachial artery near the elbow joint is absent [209, 210],
suggesting that loss of muscle splitting correlates with
simplification of arterial topography during evolution.
The evolutionary reduction of forearm and manual mus-
cles is also recognizable in the flippers of penguins; how-
ever, major muscles are still retained as diminutive forms
[211], implying that muscle splitting during embryonic de-
velopment has been evolutionarily conserved. Unlike in
cetaceans, the arterial topography of the penguin flipper is
consistent within the range of variability of most tetrapods
[211], indicating that simplification of the arterial topog-
raphy may not be correlated with the decreased oxygen
consumption of the muscles supplied by these arteries.
The evolutionary relationship between the arterial and

muscular topographies may also be present in part in
non-tetrapod sarcopterygians. In the extant coelacanth
Latimeria, the main trunk of the pectoral fin artery bifur-
cates at a point just medial to the second pronator muscle
[212]. Since this point corresponds to the elbow joint of
tetrapods [27], the bifurcating arteries are likely homolo-
gous with the radial and ulnar arteries of tetrapods.
Muscle splitting in the forelimb bud is not identical to

that in the hind limb bud, although both limb muscles
develop from similar premuscle masses. In studies of
chicken [213, 214] and mouse [215, 216], a paired-type
homeodomain transcriptional factor Pitx1 is responsible
for the morphological identity of the hind limb, and mis-
expression of Pitx1 in the LPM-derived forelimb bud
mesenchyme results in homeotic transformation from
forelimb- to hind limb-like muscle patterns. A similar
homeotic transformation has also been identified in a
human congenital anomaly, Liebenberg syndrome, the
etiology of which involves a genomic change at the PITX1
locus [217]. These studies on Pitx1 suggest that limb
muscle patterns emerge in accordance with information
within the limb bud mesenchyme prior to the migration
of the MMPs.
Although muscle splitting plays a central role in the

patterning of limb muscles, it should be noted that individ-
ual muscles are not always formed directly through the
muscle splitting of a premuscle mass [218]. For example,
after muscle splitting, multiple muscle primordia fuse into
a single muscle (secondary fusion) during the development
of pectoralis and brachialis muscles in humans [218]. Fur-
thermore, during development of the human extensor digiti
minimi muscle, primordia are formed at the fourth and
fifth digits; however, the primordium at the fourth digit
later disappears [218]. These secondary remodeling pro-
cesses of developing muscles are indispensable to the for-
mation of taxon-specific muscle topography.
During the development of individual muscles, multiple

myoblasts fuse to form multinucleated myotube cells [219];
subsequently additional myoblasts fuse to the myotube,
eventually forming myofiber cells [220]. Satellite cells,
which are derived from the shared cell population with
myoblasts, are also incorporated in each muscle and reside
between the sarcolemma and basement membrane of
myofibers [141, 221].
The process of limb muscle regeneration shows similar-

ities with the developmental process. In amniotes, satellite
cells proliferate and differentiate into myoblasts during
skeletal muscle regeneration [141, 221–223]. At the differ-
entiation from the satellite cell to myoblast, Lbx1 is transi-
ently expressed [224], reminiscent of the differentiation
from the MMP to myoblast in embryonic development.
Subsequently, differentiating satellite cells migrate to the
regenerating site while interacting with MCT expressing
Tcf4 [223]. Ephrins produced by neighboring myofibers
also likely provide repulsive signals for migrating satellite
cells [222]. These satellite cell behaviors are suggestive of
commonality with MMP migration in the limb buds.
As mentioned earlier, urodeles are able to regenerate an

amputated limb, and the topography of limb muscles is re-
currently formed during this process [67, 225]. In urodeles,
satellite cells are the source for regenerated limb muscles
before metamorphosis; however, after metamorphosis, re-
generated limb muscles are derived from de-differentiated
myofiber cells [85, 86, 226]. Although the mechanism of the
recurrent generation of individual muscles in an amputated
limb remains unclear, it may be important for understanding
how limb muscle homology is maintained during evolution.

Interaction between developing muscles and
tendons in amniotes
The tendon is a dense, highly organized fibrous connective
tissue, composed predominantly of type I collagen, which
transmits a uniaxial force between a bone and a muscle
[181, 227, 228]. It is very similar to the ligament, which is
connected solely to bones [229]. At the junction between
the bone and the tendon or ligament, there is a transitional
tissue, or fibrocartilage, in which chondrocytes are enclosed,
and the fibers of tendon or ligament connect to the perios-
teum [230]. In the development of this junction, a common
progenitor cell population that co-express Sox9 and scler-
axis (Scx; a basic helix-loop-helix (bHLH) transcriptional
factor) differentiates into tendon or ligament cells (teno-
cytes or ligamentocytes, respectively) or chondrocytes at
the attachment site of the bone (enthesis) [231–233]. How-
ever, the patterning of the tendon is not necessarily coupled
with that of the skeleton; rather it forms under shared cues
with the muscle patterning [234]. On the muscle side, the
fibers of the tendon connect to the epimysium and peri-
mysium; i.e., the MCTs surrounding the individual muscles
and bundles of myofibers, respectively. The junction be-
tween the muscle and tendon initially form as a specialized
region of the epimysium and later become contiguous with
the perimysium [235].



Fig. 6 Schematic drawing of the plexus mesenchyme in the E10.5
mouse. Based on Wright and Snider [251]. The plexus mesenchyme
expressing Gdnf is of lateral plate mesodermal origin, and does not
involve muscle precursor cells
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The formation of individual muscles in the limb is intim-
ately related with tendon development. According to the ex-
periments focusing on tendon development in the absence
of muscle, and vice versa, in chicken embryos, the differenti-
ation of tendon and muscle progenitors occur independently
of each other, but the subsequent muscle splitting and segre-
gation of tendon primordia into individual tendons require
reciprocal interactions between the developing muscle and
tendon [236]. These interactions involve Fgf signaling in
chicken embryos [237–239]. Such interactions are respon-
sible not only for the topography of the muscles, but also for
the shape of muscle bellies sculptured by myofiber apoptosis
[240]. In mice, tendons in the limb, in particular in the
zeugopod (forearm), become elongated as the zeugopod
skeleton elongates, after the establishment of the connec-
tion between muscle and tendon [241]. Late in this mor-
phogenetic process, the flexor digitorum superficialis
muscles, which initially develop in the autopod (manus),
become translocated into the zeugopod [241, 242].
Our current understanding of tendon development is

based largely on studies of Scx, which is a specific marker
for tendons and ligaments [238, 243–248]. Although some
signaling molecules, including transforming growth factor
β (Tgfβ) and CXC chemokines, likely regulate differenti-
ation and maintenance of Scx-expressing tendon progeni-
tors [249, 250], how the tendon progenitors are specified
in embryonic mesenchyme remains unsolved.

Interaction between developing muscles and
motoneuron axons in amniotes
Although the evolutionary conservation of the topography
of the brachial plexus and peripheral branching axons has
attracted the attention of researchers in comparative
anatomy, the morphogenesis of limb-innervating nerves
remains for the most part unclear.
In embryonic development, the brachial plexus is

formed at the “plexus mesenchyme” [251] (Fig. 6), which
consists of LPM at the base of the limb bud. Gdnf (glial cell
line-derived neurotrophic factor) is transiently expressed in
the plexus mesenchyme, and likely supports neurons while
their axons organize in the plexus [251–253]. The migrat-
ing MMPs are diverged into the dorsal and ventral premus-
cle masses at the plexus mesenchyme [251], suggesting that
the plexus mesenchyme also affects the MMP migration. In
addition, the fact that the development of the latissimus
dorsi and cutaneous maximus muscles, both of which de-
velop through the in-out migration of MMPs from the limb
bud, requires Gdnf after the formation of the plexus [252]
should be noted in light of the involvement of the plexus
mesenchyme in MMP migration.
The timing of the first contact between nerve axons and

developing muscles varies among tetrapods. In mammals
and anurans, nerve axons enter the limb premuscle
masses almost concurrent with premuscle mass formation
[254–256], while in birds the axons remain at the plexus
region prior to the onset of primary myotube formation
[257, 258]. Considering this interspecific difference, inter-
action between the nerve axon and developing muscle
may not be required for the morphogenesis of limb mus-
cles before the primary myotube formation.
The limb-innervating motoneurons are specified accord-

ing to the expression pattern of Hox genes in the spinal
cord [259–264]. Although the limb muscle-innervating
motoneurons are specified at the level of MMP-producing
somites along the body axis, experimental perturbations
have indicated that the specification of these motoneurons
are independent of those of MMP-producing somites [265].
The axons of the limb muscle-innervating motoneurons
extend to innervate the corresponding muscles (Fig. 7)
in accordance with the surrounding environment, as
shown by experimental perturbations of avian embryos
[177, 266–269]. The correspondence between the moto-
neurons and each muscle (Fig. 7) is determined prior to
the innervation, as exemplified by experiments displacing
motoneuron pools in the chicken embryo by craniocaud-
ally reversing the spinal cord at the lumbosacral level
[266], as well as by perturbing the Hox code in the spinal
cord at the brachial level [259].
Detailed observation of the chicken hind limb has shown

that, in the limb mesenchyme, the axons pass across the
domain where glycosaminoglycans are thin, so the axons
do not pass the domains where cartilages later develop
[270]. Similarly, a recent study of various amniote embryos
suggested that a class 3 semaphorin, Sema3A, secreted
from chondrocytes provides a repulsive signal for axonal



Fig. 7 Columnar organization of motor neuron pools and the topography of nerves innervating limb muscles in tetrapods. Motoneuron
columnar organization is based on the study using the chicken [259]. Topography of nerves and skeletal elements of Tarentola (Ascalabotes)
fascicularis (gecko) illustrated in Sewertzoff [114] is shown as a representative. Skeletal elements of the metapterygial axis are colored in blue, and
the other (preaxial) skeletal elements in gray. Nerves for the scapulohumeralis (green) and flexor carpi ulnaris (orange) muscles are shown as
examples of correspondences between motoneuron pools and their respective target muscles. cor, coracoid; fcu, nerve for the flexor carpi ulnaris
muscle; fcun, motoneuron for the flexor carpi ulnalis muscle; hum, humerus; scap, scapula; I–V, digits I–V; LMC, lateral motor column; sch, nerve
for the scapulohumeralis muscle; schn, motoneuron for the scapulohumeralis muscle; pl.br, plexus brachialis; rad, radius; ul, ulna
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guidance [271]. In contrast, β-catenin stabilization in muscle
provides an attractive signal to the axons [272, 273]. Consid-
ering the hypothesis of Fürbringer [88] regarding the evolu-
tionary change that brought about the brachial plexus, the
possibility that the pathfinding of the axons follows the
regionalization associated with the metapterygial axis in the
limb mesenchyme (Fig. 7) deserves consideration.
In vertebrates, at the junction between a motoneuron

axon and muscle, there is a specific type of synapse, namely
the neuromuscular junction, in which acetylcholine (ACh)
functions as an excitatory neurotransmitter to cause muscle
contraction [274]. Prior to the arrival of the motoneuron
axon, ACh receptors (AChRs) are aggregated to form mul-
tiple clusters (aneural AChR clusters) at a region in the
middle of the myofibers. This AChR-aggregated area is the
foundation of the neuromuscular junction, in that the nerve
terminals arrive at certain aneural AChR clusters to initiate
synaptogenesis [274]. Until the completion of the neuro-
muscular junction formation, which proceeds postnatally
for 2 weeks in the mouse, a single myofiber is transiently
innervated by axons of multiple motoneurons, although it
later becomes innervated by only a single motoneuron
axon through reciprocal interactions between the muscle
and synapse plus terminal Schwann cells [275–279].
Experiments involving removal of nerves in the chicken

embryo have demonstrated that interaction with nerves is
not responsible for muscle splitting [280, 281]. In contrast,
neuromuscular junction formation is involved in the later
phase of development after the formation of primary myo-
tubes, as contractions of muscles are responsible for the
morphogenesis of muscles [250, 282, 283] and the bony
ridges at muscle attachment sites [284].

Observed variability in the forelimb muscles
The developmental process explained above allows modest
intraspecific variability in morphology of forelimb muscles.
Since forelimb muscles are present as paired structures,
intraspecific variations showing fluctuating asymmetry
[285, 286] are expected to originate from developmental
fluctuation rather than the genetic background. Indeed,
such variations have been reported in human anatomy; e.g.,
the muscular axillary arch [Muskulöser Achselbogen] and
sternalis muscle as variations of the pectoralis muscle
[287–295]. In another case, extensive fluctuating asym-
metry has been reported for wing muscles of the flight-
less bird, emu (Dromaius novaehollandiae), suggesting
relaxed stability of the developmental mechanism in
the vestigial limb [296]. Future studies of the variability
observed in limb muscles may improve our understand-
ing of the relationship between developmental fluctu-
ation and evolvability.

Diaphragm: an evolutionary novelty of the
mammalian lineage
As mentioned above, after their evolutionary origin,
forelimb muscles have evolved without drastic
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modification. However, recent studies of evolutionary
changes in forelimb position along the body axis have
found that the mammalian diaphragm likely evolved
from a shoulder muscle, through a partial duplication of
the forelimb MMP population [110, 297]. In particular,
comparison of brachial plexuses among amniotes suggests
that the diaphragm evolved from the subscapular muscle of
the ancestor [110] (Fig. 8a, b). In the evolution toward
mammals, the supracoracoid muscle diverged into two
muscles, namely the supra- and infraspinatus muscles [19],
and it is possible that the evolutionary origin of these two
muscles coincided with that of the diaphragm through a di-
vergence from the ancestral subscapular muscle (Fig. 8a, c).
Some classical papers of comparative anatomy [298, 299]

have suggested that the diaphragm evolved from the rectus
cervicus muscles, namely hypobranchial muscles, which
also develop from MMPs. However, recent studies of devel-
opmental biology have highlighted commonalities between
the diaphragm and forelimb muscles: both these muscles
develop in LPM-derived mesenchyme expressing Tbx5 and
Hgf, unlike the hypobranchial muscles [119, 133, 152, 153].
In addition, a few clinical cases of associated movements
between the diaphragm and some forelimb muscles (Erb’s
palsy) in patients who experienced birth injuries of the bra-
chial plexus have been reported [300–302]. As suggested by
Oosuga [303], it is possible that these cases reflect the fore-
limb muscle-like identity of the diaphragm.
Fig. 8 Putative evolutionary origin of the diaphragm through a partial dup
lateral views. a Subcoracoscapular muscle (subscapular muscle-homolog) o
muscle of the ventrolateral forelimb muscle group in a Pelycosaur-grade ta
diaphragm, which evolved from the subcoracoscapular muscle of Pelycosa
and Wejs [304]). c Supraspinatus and infraspinatus muscles in Didelphys. No
border between the supraspinatus and infraspinatus fossae (*) in (c) [117, 3
infraspinatus muscle; hum, humerus; mtc, metacoracoid; prc, procoracoid; s
spc, supracoracoid muscle; ssf, supraspinatus fossa; ssp, supraspinatus musc
As a candidate exception to forelimb muscle hom-
ology, the diaphragm offers an exclusive opportunity for
understanding when and how a drastic modification was
possible in the evolutionary history after the establish-
ment of an evolutionary novelty, or a new developmental
constraint.

Conclusions

1. At the pectoral fin-to-forelimb transition, the number
of muscles increased, while the number of spinal
nerves innervating these muscles decreased. The
brachial plexus is an evolutionary novelty of tetrapods.
Within the tetrapod lineage, limb muscle homology
has been largely conserved.

2. Forelimb muscles develop from diffuse migrating
somitic cells, or MMPs. The limb muscle homology
is generated mainly through subdivision of myoblast
masses (muscle splitting). The LPM-derived limb
mesenchyme likely provides the information for the
proper distribution of MMPs, and subsequently the
MCTs differentiated from the LPM-derived limb
mesenchyme subdivide each myoblast mass into
individual muscles. Development of blood vessels
plays some role in the latter process.

3. The reciprocal interaction with tendon progenitors
is necessary for the morphogenesis of individual
lication of MMP population. Based on Hirasawa and Kuratani [110]. Left
f the dorsomedial forelimb muscle group and the supracoracoid
xon, Dimetrodon (based on Romer [19]). b Subscapular muscle and the
ur-grade ancestors, in an extant mammal, Didelphys (based on Jenkins
te the cranial margin of the scapula (*) in (a) corresponds to the
05]. acr, acrominon; dph, diaphragm; isf, infraspinatus fossa; isp,
bcs, subcoracoscapular muscle; sbs, subscapular muscle; scap, scapula;
le
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muscles, but the tendon and muscle progenitors begin
their differentiation independently of each other.

4. Although the topography of the brachial plexus and
the relationship between the nerves and their
innervating forelimb muscles are evolutionarily
conserved, the developmental mechanism
recurrently generating them remains largely unclear,
and should be the subject of future analyses.

5. In addition to further studies on the developmental
mechanism recurrently generating the forelimb
muscle homology, particularly focusing on MCTs
and tendons, studies on intraspecific variability of
the forelimb muscle morphology and research on
the diaphragm as a putative derived forelimb
muscle will lead to our better understanding of the
role of developmental constraints in evolution.
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