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Abstract 

Garra rufa, commonly known as the “doctor fish”, is a freshwater cyprinid native to warm regions of the Middle East. 
Since the late twentieth century, it has been widely utilized in spas for alternative therapeutics and fish pedicures 
(or manicures) for dermatological diseases such as psoriasis and eczema. Owing to its unique characteristics, there 
is growing interest in exploring various applications of G. rufa. This review provides a comprehensive summary 
of the phylogenetic position, ecology, biological characteristics, and breeding methods of G. rufa, and provides 
insights into its use as a therapeutic fish. Notably, the ability of G. rufa to thrive in high‑temperature environments 
exceeding 37 °C distinguishes it from other cyprinids and suggests its potential as a model for human diseases, such 
as human infectious diseases, and in use in cancer xenograft models for high‑throughput drug screening. The ongo‑
ing genome sequencing project for G. rufa aims to elucidate the mechanisms underlying its high‑temperature toler‑
ance and offers valuable genomic resources. These efforts have resulted in significant advances in fish aquaculture, 
species conservation, and biomedical research.
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Introduction
Garra rufa (Heckel, 1843), commonly known as the “doc-
tor fish” or red garra, is a small freshwater teleost fish 
(usually less than 15 cm in length and 40 g in weight) that 
is native to rivers, streams, and lakes in the Middle East-
ern regions, including Türkiye, Syria, Iraq, and Iran. It 
belongs to the family Cyprinidae, which is a large family 
with more than 150 species, including other carp-related 
species, such as zebrafish and goldfish [1]. Over the past 
two decades, over 40 new species have been discovered 
in Garra. As of 31 March 2024, the academic database 
Web of Science (https:// www. webof scien ce. com/) listed 
302 articles under the topic heading “Garra.” Of these, 
223 articles specifically reported on Garra fish, while the 
remaining papers focused on subjects such as the "Garra 
rufa optimization-assisted deep learning model,” or con-
tained minimal references to Garra fish in their content. 
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Of these 223 articles, 56 articles (approximately 25%) 
focused on G. rufa, highlighting its significance as the 
most-studied species within the genus. The second most 
researched species were G. lamta and G. barreimiae, 
each with nine papers (approximately 4%).

The biological characteristics of G. rufa are fascinating 
and contribute to its unique role in biotherapy in natu-
ral ecosystems and human therapeutic practices. The fish 
are known for their unique behavior of feeding on dead 
keratinized cells of human skin, an activity popularly 
referred to as fish pedicure or ichthyotherapy, which has 
made these fish popular in the tourism and health indus-
tries as natural solutions for acne, psoriasis, and eczema 
[2–4].

Their resilience in degraded river environments, toler-
ance to high temperatures, which enables them to thrive 
at spa water temperatures, and omnivorous diet, which 
includes algae, detritus, small animals, and dead human 
skin, are believed to facilitate habitat expansion. Origi-
nating in the Middle East, G. rufa has been transported 
to various regions for ichthyotherapy to treat skin dis-
eases, leading to some populations becoming invasive [5].

This review summarizes recent insights from research 
on G. rufa, covering its geographical distribution, habitat, 
culture, diseases, and therapeutic applications. In addi-
tion, we highlight the potential of G. rufa as a novel ani-
mal model in human disease research, extending beyond 

its traditional role in ichthyotherapy. This potential is 
largely attributed to its high-temperature resistance, 
suggesting that G. rufa could serve as a novel small-fish 
model alongside zebrafish and medaka.

Phylogenetic relationship between G. rufa 
and other small teleost fish
Teleosts are a large group of Actinopterygii (ray-finned 
fish) characterized by a specific genome structure result-
ing from teleost-specific third-round whole-genome 
duplication (Ts3R), which could contribute to their evo-
lutionary success[6–9] (Fig.  1). Small teleost fish are 
used widely in biomedical research because of their high 
experimental throughput, their closer genetic proximity 
to humans than invertebrate model organisms such as 
Drosophila and nematodes, and the relatively lower ethi-
cal barriers to their experimental use compared to those 
for mammalian models, such as mice [10–12]. Each small 
teleost fish model has its own characteristics; zebrafish 
(Danio rerio) and medaka (Oryzias latipes) are relatively 
easy to manipulate genetically [13–16], goldfish (Car-
assius auratus) has undergone a recent whole-genome 
duplication (Cs4R) [17–19], the threespine stickleback 
(Gasterosteus aculeatus) allows for the analysis of com-
plex social behavior [20], and the African turquoise kil-
lifish (Nothobranchius furzeri) serves as a unique model 
for studying aging [21].

Fig. 1 Phylogenetic relationship between humans, G. rufa, and other model organisms. The phylogenetic relationships between humans, G. rufa, 
and other common vertebrate model animals, and amphioxus are illustrated. The common and scientific names of each animal are displayed 
to the right of each animal silhouette, and further to the right, a brief description of the characteristics of each animal as a model organism 
is provided. The topology of the cladogram is based on previous studies [22, 23]. WGD, whole‑genome duplication; 1R/2R, first and second rounds 
of WGD; Ts3R, teleost‑specific third‑round WGD; Cs4R, common carp and goldfish‑specific fourth round WGD [17–19]. Animal silhouettes are 
from PhyloPic (www. phylo pic. org)

http://www.phylopic.org
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G. rufa belongs to the Cyprinidae family and is simi-
lar to zebrafish and goldfish. The taxonomy of the sub-
families within the family Cyprinidae is debated, with 
the number reported of subfamilies varying depending 
on the study. Subfamilies such as Danioninae, Cyprini-
nae, Labeoninae, and Barbinae have been defined; 
however, consensus has not yet been reached on their 
phylogenetic relationships [22, 24–26]. A recent mito-
chondrial genome analysis showed that G. rufa belongs 
to the Labeoninae subfamily within the family Cyprini-
dae, along with the mud carp (Cirrhinus molitorella) 
and rohu (Labeo rohita) [23]. In addition to G. rufa, the 
genus Garra includes several additional species, such as 
G. jordanica, G. ghorensis, and G. nana [27, 28]. Through 
mitochondrial DNA analyses, they have been shown to 
be genetically differentiated based on their geographical 
distribution [27–29].

Traits of G. rufa
Appearance
G. rufa is relatively small, measuring approximately 
15 cm in length when fully grown [30]. They reach sexual 
maturity at the age of one year [31]. In natural habitats, 
spawning occurs from May to August. They generally 
exhibit a grayish-brown hue, which helps them to blend 
into their natural riverbed environments (Fig. 2a and b). 
Their bodies may display subtle patterns or markings, 
and may have a paler underbelly. G. rufa has a broad 
head and an elongated body that tapers towards its tail. 
They have rounded fins, including a dorsal fin set mid-
way along the back and a rounded tail fin (Fig.  2a and 
b). Their scales are small and tightly fitted, giving them a 
smooth texture; the scales take seven distinct shapes, and 
otoliths take three different forms [32]. An adhesive disk 
or organ near the mouth is positioned on the lower part 

of the fish (Fig. 2c and d). Fish can readily locate and eat 
their feed using their ventrally positioned mouth because 
of the sticky disc located on the bottom lip, which is used 
to attach to habitat surfaces, including rocks and stones 
[33]. This anatomical feature allows G. rufa to adhere to 
human skin and feed on dead keratinocytes (Fig. 2e).

Habitat
G. rufa is found in many freshwater streams in the Asi, 
Tigris-Euphrates, Ceyhan, and Seyhan rivers in Türkiye, 
as well as in freshwater bodies in Syria, Iraq, Iran, and 
Jordan [34, 35]. Fish thrive in these river basins because 
of the suitable climatic and water conditions, including 
warm and slightly mineralized waters. G. rufa is a benthic 
fish that prefers shallow, fast-moving, warm waters with 
rocky or sandy bottoms conducive to its feeding habits. 
The native environments of different Garra species differ 
in several ways. For example, G. rufa is dominant in tur-
bid, large, and relatively deep streams, whereas G. rezai 
is dominant in clear, shallow, and small streams. In the 
Tigris–Euphrates River, which is the natural habitat of 
G. rufa, other Garra species are present, such as G. rezai 
and G. variabilis, which are very similar in external anat-
omy and are genetically closely related [36]. Therefore, 
in addition to phenotypic characteristics, analyses using 
genomic and mitochondrial DNA are important for iden-
tifying Garra species.

Breeding
The population of G. rufa in their natural habitats is 
insufficient to meet the demand for ichthyotherapy and 
other purposes, putting pressure on their natural stocks 
[37]. Habitat degradation caused by climate change, 
anthropogenic activities, and increased pollution levels 
in aquatic environments also affects G. rufa populations 

Fig. 2 Gross appearance of G. rufa. a‑b Gross appearance of an adult (a) and young (b) G. rufa. (c) Lateral view of mouth of adult G. rufa. (d) Frontal 
view of young mouth. The mouth (black arrows) in G. rufa has the additional function to adhere to bottom surfaces and to scoop up food particles. 
(e) G. rufa engaging in ichthyotherapy



Page 4 of 11Shimada et al. Zoological Letters            (2025) 11:3 

[38, 39]. Therefore, the cultivation of G. rufa is important 
for protecting populations and creating a future for sus-
tainable environments.

Water temperature is a critical factor in aquaculture. 
Generally, G. rufa is resistant to both low (3–7  °C) and 
high (38–43  °C) temperatures, and thus their thermal 
tolerance polygon values are high [40]; the Kangal Fish 
Spring in Türkiye, one of the natural habitats of this fish, 
has average water temperatures of 35  °C [4]. This is a 
significant advantage for cultivating G. rufa in tropical 
regions. However, to maintain G. rufa cultivation, sud-
den and frequent temperature changes should be avoided 
[40]. Sudden water temperature changes in aquaculture 
can result in water quality deterioration, hypoxia, nutri-
tional abnormalities, parasitic infections, and bacterial or 
fungal pathogens.

G. rufa can be reared in environments of varying sizes. 
On the larger end, G. rufa can be kept in large tanks 
with a depth of several tens of centimeters and dimen-
sions from 1 to 2 m, which mimic their natural habitat. 
However, based on our experience, it is also feasible to 
maintain them in small-scale laboratory settings. For 
instance, we house 5–10 young G. rufa (~ 6 mpf) indi-
viduals in standard 2 L zebrafish tanks with no signs of 
aggressive or abnormal behavior. As G. rufa matures, 
reaching an adult body length of approximately 10  cm, 
it is preferable to rear them in standard 360 L tanks 
(100 cm × 60 cm × 60 cm). As G. rufa is a bottom-dwell-
ing fish in natural environments, tanks with large bottom 
areas are considered ideal.

To date, few studies have been conducted on G. rufa 
culture, and the optimal conditions for its cultivation 
are gradually being defined [31, 41]. The fertilized eggs 
of G. rufa are non-adhesive, sink to the bottom of the 
tank, and must be promptly relocated to prevent the 
parent fish from eating them. The eggs can be sterilized 
prior to incubation by immersion in 5  mg/L methylene 
blue for 40–60 min. The spawning frequency of G. rufa 
is once every  15–30 days, with 57–314 eggs produced 
with an average diameter of 2.83 mm. When the fish were 
spawned in aquariums at water temperatures of 28  °C, 
85–90% of the eggs hatched in 35 h, larvae opened their 
mouths in three days and started feeding exogenously, 
and began swimming by the fourth day post-hatching. 
Additionally, the larval stage of this species lasts approxi-
mately 15 days in water with temperature ranges between 
24 °C and 32 °C.

Although phytoplankton are the primary food source 
of G. rufa, these fish also receive nutrients from bacteria 
and zooplankton in their native habitat [42]. Compared 
with zebrafish, G. rufa consumes a higher amount of feed 
(3.2% of their body weight per day) [31]. This indicates 

that G. rufa has high metabolic activity, which may con-
tribute to survival in high-temperature environments.

Diseases
Infectious diseases are among the most significant yet 
manageable diseases affecting G. rufa. Among parasites, 
Clinostomum complanatum has been reported to infect 
G. rufa in freshwater in Türkiye [43], whereas Paradiplo-
zoon bingolensis has been reported to infect G. rufa in the 
Göynük River in Türkiye [44]. Pathogenic bacteria such 
as Aeromonas sobria [45] cause significant damage to G. 
rufa during cultivation and trade. Pathogens introduced 
from the natural environment into aquaculture facilities 
can cause mortality, growth retardation, and decreased 
feed conversion rates in cultured fish, making proper 
quarantine essential. In G. rufa aquaculture, the use of 
sedative and anesthetic substances such as clove oil and 
2-phenoxyethanol is recommended to reduce stress dur-
ing transportation, parasite inspection, and other critical 
routine farming operations [46, 47].

Conventional roles of G. rufa in human society
G. rufa as “doctor fish”
G. rufa, which has gained international recognition as 
the “doctor fish,” makes a unique contribution to the 
treatment of skin disorders, particularly psoriasis. This 
natural exfoliation process, often referred to as “ichthyo-
therapy,” involves patients immersing affected areas of 
their skin in water basins containing G. rufa (Fig. 2e). The 
fish then feed on the dead skin, providing a therapeutic 
benefit. The use of the “doctor fish” as a complementary 
treatment for skin conditions is based on the ability of 
the fish to exfoliate, potentially improving the overall 
health of the skin. Patients with psoriasis, a chronic auto-
immune skin condition characterized by red, flaky, and 
crusty patches of skin covered with silvery scales, have 
reported significant relief and reduction in symptoms fol-
lowing treatment with G. rufa [2, 48, 49]. However, it is 
important to note that, although many individuals have 
experienced positive outcomes from ichthyotherapy, 
this practice should be considered a complementary 
approach rather than a standalone treatment. The scien-
tific community continues to study the extent of its ben-
efits and the underlying mechanisms.

Although ichthyotherapy with G. rufa offers some ben-
efits, it also poses some challenges. Concerns regarding 
the potential transmission of infections from these fish 
have escalated since 2000. Volpe et al. reported that mul-
tiple pathogens were present in both fish and humans 
[50, 51]. Notably, methicillin-resistant Staphylococcus 
aureus [52] and Mycobacterium marinum infections 
[53] following ichthyotherapy have been documented. 
Various types of bacteria (Aeromonas spp., Vibrio spp., P. 
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aeruginosa, and Mycobacterium spp.) have been detected 
in fish spa ponds, which may have originated from water, 
fish, or humans [45]. During fish therapy, the water con-
taining the fish can transmit infections from one person 
to another. However, the transmission of the infection 
through contaminated water to healthy individuals is 
limited to hand and foot fish spas [54]. The sanitary con-
ditions of the water and the health status of the fish are 
critical for ensuring the safety and efficacy of treatment, 
including the use of certain water disinfectants [55].

Despite these concerns, the use of G. rufa in the treat-
ment of skin diseases remains a topic of interest for 
dermatologists and patients seeking alternative or com-
plementary therapies. As research advances, a clearer 
understanding of the benefits, limitations, and best prac-
tices associated with ichthyotherapy may emerge, poten-
tially solidifying its application in the broader context of 
dermatological treatment.

G. rufa as ornamental fish
Ornamental fish are bred and maintained primarily 
for their aesthetic appeal, often in aquariums or artifi-
cial ponds. Examples include goldfish (Carassius aura-
tus), common carp (Cyprinus carpio), medaka (Oryzias 
latipes), betta fish (Betta splendens), and various tropical 
fish species. The annual turnover of ornamental fisheries, 
which generates up to $15 billion in revenue, is an impor-
tant commercial activity supporting one of the most pop-
ular leisure activities worldwide [56]. Ornamental fish 
often exhibit unique phenotypes, such as diverse body 
colors and shapes. Studying the molecular mechanisms 
underlying these phenotypes in ornamental fish can pro-
vide insights into the fundamental biological principles 
of vertebrates, highlighting their value as experimental 
models [17, 19, 57–59].

The Garra species G. lissorhynchus, G. spilota, G. 
culiciphaga, and G. rufa are also known as ornamental 
or aquarium fish (www. aquar iumgl aser. de). Although 
G. rufa are bottom-dwelling fish, they are beneficial to 
breeders and are preferred by many aquarists because 
they help control algae and accumulation of excess feed 
in aquariums. G. rufa is imported and utilized in many 
countries. Many are cultured in Indonesia [54, 60], with 
active cultivation on the island of Java. Producers also 
trade this fish in marketplaces from East to West Java. 
Producers from West Java offer lower prices than those 
from East Java. Most producers are from Bekasi. Online 
vendors sell G. rufa in the size range of 1–3 cm at a price 
range 0.06 of 0.19 USD.

G. rufa as human nutrition
G. rufa is also consumed by humans and is considered 
edible by the local people of Oman [61] and Türkiye 

[62, 63]. The flesh of G. rufa has been demonstrated to 
contain a high proportion of dietary fatty acids such as 
oleic acid (18:1ω9), eicosapentaenoic acid (20:5ω3), doco-
sahexaenoic acid (22:6ω3), arachidonic acid (20:4n-6), 
omega 3 (n-3)/omega 6 (n-6), and total monounsaturated 
fatty acids [64]. Seasonal variation in water temperature 
and feed composition affect total lipid and fatty acid 
content [64]. These fatty acids promote human health 
by improving dyslipidemia, preventing thrombosis, and 
exerting neuroprotective effects. Therefore, G. rufa has 
potential not only as a simple source of calories, but also 
as a functional food. In addition, because of its ease of 
farming and high heat tolerance, G. rufa may become an 
important alternative food source for humans in the near 
future, as global warming progresses [65].

Emerging roles of G. rufa in human health care 
and medical research
Expansion of medical use as “doctor fish”
The medical and therapeutic applications of G. rufa, par-
ticularly in dermatology and alternative medicine, have 
broadened considerably. In addition to its well-docu-
mented use in the treatment of psoriasis, G. rufa is used 
to assist in the management of eczema and various dry 
skin conditions. The removal of dead skin layers poten-
tially reduces discomfort and improves the efficacy of 
moisturizing treatments.

The potential of G. rufa in enhancing wound healing 
has garnered increasing interest. Although research is 
ongoing, it has been posited that these fish may aid in 
wound cleaning by eliminating dead skin, thereby low-
ering infection risk and accelerating the healing pro-
cess. Notably, the saliva of G. rufa is believed to contain 
components that promote wound healing, including 
antimicrobial agents [3, 60]. Although these specific 
components have not yet been identified, similar ben-
eficial substances, mainly antimicrobial peptides, have 
been detected in the skin and mucus of various fish spe-
cies [66–68], suggesting the possibility of analogous com-
pounds in G. rufa. This attribute may extend its medical 
applications beyond conventional dermatology. In addi-
tion, G. rufa treatment is associated with stress relief and 
benefits to mental well-being. The unique sensation of 
fish nibbling is often described as gentle tickling, which 
induces relaxation and enhances the overall spa experi-
ence. A clinical trial of ichthyotherapy for psoriasis at 
Kangal Hot Springs in Türkiye reported a reduction in 
patient stress and enhancement in psychological well-
being [4]. This suggests that the therapy could be applica-
ble not only to dermatological diseases but also to various 
stress-related illnesses and mental disorders.

http://www.aquariumglaser.de
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Novel fish with high‑temperature tolerance as a model 
organism for human disease
In recent years, with a global increase in animal welfare 
awareness and efforts to improve efficiency and reduce 
the costs of bioresearch, drug discovery, and safety test-
ing, the use of mammalian animals in research has 
decreased [69]. As alternatives, the use of cultured cells, 
including induced pluripotent stem cells, predictive 
analysis using informatics and artificial intelligence, and 
test systems employing non-mammalian animals, such 
as fish, insects, and nematodes, has been increasing [70]. 
Fish are particularly important tools for understand-
ing diseases and developing pharmaceuticals, because 
they as vertebrates they are more similar to humans than 
insects or nematodes, and share many organs in common 
with humans [71–73].

As genome sequencing projects and molecular analy-
ses of teleosts have progressed, various small fish species, 
including zebrafish [10, 11, 73], medaka [74, 75], goldfish 
[17], and African turquoise killifish [76] have emerged 
as valuable model organisms for several research areas, 
such as toxicology, drug discovery, and human medicine 
and diseases. Despite the unique biological characteris-
tics of each species, they share commonalities in cellular 
proliferation, cell cycle, cell division, apoptosis, and fun-
damental intracellular signaling pathways. These similari-
ties make them excellent model organisms for exploring 
early development, organ formation, tissue regeneration, 
infections, and carcinogenesis, and occasionally as mod-
els for higher brain functions, such as neurobehavioral 
and learning capabilities [17, 72, 77, 78]. These small fish 
models, bolstered by global animal welfare movements, 
have rapidly gained popularity as alternatives to tradi-
tional rodent models such as mice and rats.

However, similar to their rodent counterparts, small 
fish models have certain limitations. In particular, the 
requirements of different optimal growth temperatures 
are often overlooked. Fish are ectothermic, which means 
that the concept of internally regulated body temperature 
does not apply to them in its strictest sense. Nevertheless, 
temperatures higher than normal have been reported 
to profoundly influence the function of many organs, 
cause damage to the liver [79–81] and adipose tissues 
[82] and enhance the immune response [83, 84]. In the 
field of cancer research, xenograft studies have actively 
pursued the transplantation of human-derived cancer 
cells into zebrafish to explore anticancer drugs, thera-
peutic targets, and mechanisms [85–87]. However, the 
viability of human-derived cancer cells coexisting with 
zebrafish in environments of up to 34  °C [88]—and not 
for extended periods—as true cancer cells, is highly ques-
tionable. Numerous reports have highlighted successful 
examples of human-derived cancer cell transplantation 

into zebrafish; however, few successes have been noted 
for deeper cancers, such as pancreatic and prostate 
cancers. In infectious disease research, small fish spe-
cies are commonly used as models of human diseases 
caused by various infectious microorganisms. However, 
because microorganisms that infect humans generally 
thrive in environments at 37 °C, there is no strictly fish-
based model that accurately replicates human infections 
[89–91]. Zebrafish are well-known models of tuberculo-
sis. However, when the human pathogen Mycobacterium 
tuberculosis is introduced into zebrafish larvae, the bacte-
rium can only be detected for nine days. As a substitute, 
another species from the Mycobacterium genus, M. mari-
num, has been used as a source of infection [92]. How-
ever, M. marinum rarely causes respiratory infections in 
humans, which limits its relevance in modeling human 
respiratory diseases.

Based on these findings, one of the significant chal-
lenges that fish face as model organisms for human dis-
eases is their ability to thrive at high temperatures, such 
as at 37  °C, which is considered high for most fish spe-
cies. In addition to G. rufa, a few fish, including arowa-
nas and some African cichlids, grow at this temperature. 
Arowanas, which can reach approximately 1 m in adult-
hood and live for approximately 10 years, are challenging 
to manage in laboratory settings due to their size. Afri-
can cichlids, typically reaching approximately 10  cm in 
adult size and known for brooding their fertilized eggs 
inside the mouths of females, are difficult to maintain in 
mixed-species tanks [93] and have been reported to grow 
normally only at temperatures up to 35  °C. In contrast, 
G. rufa demonstrates the most robust heat resistance 
among these species, and is known worldwide for its use 
as “doctor fish” in spas and hot springs (Table 1). Prelimi-
nary tests conducted by our team have shown that it can 
survive in environments as hot as 40 °C with no observ-
able effect on locomotor activity. G. rufa is omnivorous, 
highly fertile, and reaches adult sizes of 10–15 cm, with 
juveniles measuring approximately 3 cm, suitable for use 
in laboratory research. Additionally, the diameter of fer-
tilized eggs is approximately 3  mm, and they are trans-
parent [41], which facilitates microinjections for genetic 
manipulation and chemical evaluation. Unfortunately, 
because the genome sequence of G. rufa is unknown, 
reports on its use as a human disease model are lacking. 
However, similar to zebrafish and medaka, G. rufa has 
the potential to be used as a model organism in medi-
cal biology. In addition, the transplantation of human-
derived cancer cells, a task that is challenging to achieve 
in zebrafish, has been successfully demonstrated (data 
not shown). We believe that G. rufa could emerge as a 
new model organism for human disease research.
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Genome sequencing of G. rufa
The limited availability of genomic resources for G. rufa 
hampers genetic manipulations and conduct compre-
hensive analyses of unique molecular pathways in the 
species. Recent advances in genome sequencing tech-
nology and bioinformatics [94], including long-read 
sequencing and high-throughput chromosome confor-
mation capture analysis, have made chromosome-level 
whole-genome sequencing feasible for many organ-
isms [95–98]. To date, 71 cyprinid genome assem-
blies have been registered in the National Center for 
Biotechnology Information genome database. Among 
these genome assemblies, 26 were located at the chro-
mosomal level. The status of genome assemblies of fish 
belonging to the subfamily Labeoninae, to which G. 
rufa belongs, is detailed in Table 2. Within this subfam-
ily, 11 genome assemblies have been reported, three of 
which–Labeo rohita (GCA_022985175.1), Cirrhinus 
molitorella (GCA_033026305.1), and Cirrhinus mrigala 

(GCA_036247105.1)–are at the chromosome level 
(Table 2).

Cytological studies have determined the chromo-
some number of G. rufa to be 25 [34]. However, direct 
experimental estimates of the genome size of G. rufa are 
lacking. Given that the genome sizes of L. rohita (Gen-
Bank accession: GCA_022985175.1) and C. molitorella 
(GenBank accession: GCA_033026305.1), which belong 
to the same Labeoninae subfamily as G. rufa, have been 
reported to be approximately 1  Gb (Table  2), it is likely 
that the genome size of G. rufa is also approximately 
1 Gb.

Transposable elements (TEs) are major components 
of non-coding regions in animal genomes [99–102]. 
Although the genome assembly of G. rufa has not yet 
been reported, the TE profiles of other Labeoninae 
genomes, such as those of L. rohita, C. molitorella, and 
C. mrigala, provide insights into the likely TE landscape 
of the G. rufa genome. In the L. rohita genome, 41.25% 

Table 1 The upper limit temperature to keep various fish

a Based on our preliminary data (as mentioned in the text)
b Since no studies have yet identified which specific species of African cichlids exhibit high-temperature tolerance, they are referred to at the genus level

Common name Scientific name Upper limit temperature Size Breeding

Doctor fish Garra rufa 40 ℃a 10–15 cm Easy

Arowana Osteoglossum bcirrhosum 36 ℃ 50–100 cm Difficult

African cichlids Cichlidae*b 35 ℃ 10–15 cm Difficult 
(mouth 
breeding)

Nile Tilapia Oreochromis niloticus 39 ℃ 20–60 cm Diffi‑
cult (mouth 
breeding)

Zebrafish Danio rerio 34–35 ℃ 3–5 cm Easy

Medaka Oryzias latipes 34–35 ℃ 3–4 cm Easy

Table 2 Publicly available genome assemblies in the Labeoninae subfamily

Scientific name GenBank Assembly Size 
(Mb)

Number of 
chromosome‑level 
scaffolds

Assembly level Release data

Cirrhinus cirrhosus (mrigal carp) GCA_019207145.1 1,153 ‑ Contig Jul, 2021

Cirrhinus molitorella (mud carp) GCA_004028445.1 920 ‑ Scaffold Jan, 2019

Cirrhinus molitorella (mud carp) GCA_033026305.1 1,033 25 Chromosome Oct, 2023

Cirrhinus mrigala (mrigala) GCA_036247105.1 1,057 25 Chromosome Jan, 2024

Labeo calbasu (orange‑fin labeo) GCA_019740295.1 1,042 ‑ Scaffold Aug, 2021

Labeo catla (catla) GCA_012976165.1 1,020 ‑ Scaffold May, 2020

Labeo catla (catla) GCA_014525385.1 1,232 ‑ Scaffold Sep, 2020

Labeo gonius (Kuria labeo) GCA_013461565.1 738 ‑ Scaffold Jul, 2020

Labeo rohita (rohu) GCA_004120215.1 1,485 ‑ Scaffold Jan, 2019

Labeo rohita (rohu) GCA_017311145.1 1,485 ‑ Scaffold Mar, 2021

Labeo rohita (rohu) GCA_022985175.1 1,127 25 Chromosome Apr, 2022
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has been annotated as repetitive elements, with a nota-
ble abundance of LTR retrotransposons and DNA ele-
ments [103]. In the C. molitorella genome, repetitive 
elements account for 45.18% of the genome, with DNA 
elements being the most prevalent (29.37%), followed 
by LTR retrotransposons (5.55%), long interspersed 
nuclear elements (LINEs, 4.34%), and short interspersed 
nuclear elements (SINEs, 0.55%) [104]. Similarly, in 
the C. mrigala genome, repetitive elements account for 
48.20% of the genome, with DNA elements constituting 
3.67%, and LTR retrotransposons 2.24% [105]. Based on 
these studies, it is reasonable to hypothesize that the G. 
rufa genome is similarly rich in DNA elements and LTR 
retrotransposons.

To establish the genomic resources for G. rufa, we 
organized an international consortium that included 
Mie University, Japan; Badan Riset dan Inovasi Nasional 
(BRIN), Indonesia; and the University of Vienna, Aus-
tria. This consortium focuses on the construction of 
a chromosome-level assembly of the G. rufa genome 
and characterization of its anatomical and physiologi-
cal uniqueness [106]. The consortium has established an 
Agreement on Access and Benefit-sharing for Academic 
Research, and is endeavoring to establish this locally val-
uable genetic resource as a novel model organism for bio-
medical research.

Conclusion
This review discusses the current scientific and social 
information on G. rufa, highlighting its potential as a 
new model organism for studying human diseases owing 
to its ability to thrive at human body temperature, an 
attribute not observed in other widely used fish models. 
Since human pharmaceuticals are designed to function at 
human body temperature and microorganisms that infect 
humans typically thrive best at 37 °C, G. rufa, which also 
thrives at this temperature, represents a unique advan-
tage as a model for use in biomedical research. Further-
more, the ongoing genome sequencing project for G. rufa 
holds promise for elucidating the mechanisms underlying 
its high-temperature tolerance, a trait that sets it apart 
from other Cyprinidae species. These insights could also 
contribute to fish aquaculture and species conservation 
in the context of global warming.
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